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Abstract. Israel’s method for treatingsurface layers is applied to determine the gravitational 
field due to a rotating cylindrical shell. The interior space-time is flat while the exterior 
metric can be one of three types. For a given value of the stress in the cylinder, the type 
of the exterior metric depends on the mass per unit coordinate length of the cylinder. 

1. Introduction 

The problem of determining the gravitational field due to a rotating infinite cylindrical 
shell has been discussed by Frehland (1972) and Papapetrou et a1 (1978). However 
in these papers the authors have restricted their attention to one form of the exterior 
metric whereas it is known (Van Stockum 1937, Tipler 1974, Bonnor 1980) that there 
are three real forms for the exterior metric depending on whether a certain constant 
of integration is positive, negative or zero. In the present work we shall use Israel’s 
(1966) method for constructing shell sources to match, in their most general form, 
the three exterior forms of the metric to the interior metric which is necessarily flat 
(Davies and Caplan 1971). It is shown that the form of the exterior metric depends 
on whether the mass per unit coordinate length of the cylinder is less than, equal to 
or greater than a certain critical value. As a particular example we discuss briefly the 
case of a shell composed of dust. 

In § 2 we give the three exterior vacuum metrics for a stationary cylindrically 
symmetric field in their most general form and show that the interior is necessarily 
flat. In § 3 we apply these metrics to the problem of an infinite cylindrical shell of 
coordinate radius r = a and find the surface energy tensor and mass per unit coordinate 
length of the shell for each of the three exterior metrics. In 9 4 we give the restrictions 
on the metric constants imposed by physical considerations and evaluate the proper 
density and principal stresses on the shell, which we then use in § 5 to show that for 
a given stress, the value of the mass per unit coordinate length determines the type 
of exterior metric. 

2. General solution for a stationary cylindrically symmetric vacuum field 

A stationary vacuum field with cylindrical symmetry has a metric of the form 

(ds)2 = -e2A (dt + v d4)2  +e-’’ [e2”(dr2 + dz2) + r2 d42]  (2.1) 

t Also at: Carlow Regional Technological College. 
t Also at: School of Theoretical Physics, Dublin Institute for Advanced Studies. 
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where r, z ,  4 are cylindrical coordinates and A, Y and y are functions of r only. The 
vacuum field equations Rii = 0 yield three different real forms of the metric correspond- 
ing to the three types of cylindrically symmetric solutions discussed by Van Stockum 
(1937), Tipler (1974) and Bonnor (1980). These are: 
case (i) 

2 1  2 a - 2 G  a + 2 G  
(ds) = -- [p i -"  - p l + ' ]  dt2 +- a [ ( - ) p l + "  2w + ( -)pl-c] 2w 

&$ dl 
ff1 

where a: = a', p = lwlr and a, c, D, G and w are constants; 
case (ii) 

2wr 
f f1  

(ds)' = --sin p d t 2 + 2 r  

where p = lwlr, p = c log p and a, c, D, G and w are constants and again a ;  = a2;  
case (iii) 

(ds)2 = -2br log p dt2 + 2r(l-  2G log p )  d 4  dt 

+(2Gr/b)(l - G  logp) dcj2+Dp-1/2(dr2+dz2) (2.4) 

where p = lwlr and b, D, G and w are constants. 
In constructing a cylindrical shell source, Frehland (1972) and Papapetrou et a1 

(1978) consider only case (i). In the following sections all three cases will be studied. 
We notice that, by means of the complex transformation c+ic ,  a +ia,  cul+ial, 

we can obtain the case (ii) metric from case (i), as has been mentioned by Kramer et 
a1 (1980). Case (iii) is obtained from case (i) by letting c and a go to zero keeping 
a / c  constant. If one lets G and b go to zero in case (iii) while keeping G/b constant 
one obtains cases (i) and (ii) with c = 0 (a  # 0). For the purposes of a classification to 
be made in 00 4 and 5 we shall consider the latter metric to be a special limit of case 
(iii) so that c will be taken to be strictly non-zero in cases (i) and (ii). 

Case (i) is Petrov type I for all non-zero values of c, except c = *1 when it is flat 
and c = *3 when it is Petrov type D. Case (ii) is Petrov type I for all non-zero values 
of c. Case (iii) is Petrov type I1 in general but the special limit referred to above (or 
alternatively cases (i) and (ii) with c = 0) is Petrov type D. 

These three cases represent the complete general solution for a stationary vacuum 
field exterior to a cylindrically symmetric source. For the interior vacuum solution 
we require, in addition, that the curvature invariants be non-singular along the axis 
r = 0 and that elementary flatness holds along this axis, i.e. that r-'g++/g,, + 1 as r + 0 
(see Synge 1964). 

The only non-identically zero curvature invariants for all three cases are RahcdR 
and R,bCdRcdefReyb. In case (iii) these are singular at r = 0 while in case (ii) they are 
non-singular at r = 0 only if c 2  3 3, but the metric does not satisfy elementary flatness 
there. Hence the interior metric cannot be of either of these two forms. In case (i) 
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the curvature invariants are non-singular on the axis r = 0 only if c2  = 1, in which case 
the metric is Minkowskian. Thus the interior space-time must be flat. 

Putting c = k l  in (2.2) the elementary flatness condition on the axis yields two 
relations between the constants and by a transformation of the form 4' = w t / D  + 4 
one obtains the metric 

ds2 = -LO1 dt2 + Lor2 d4'+ Lo(dr2 + dz2) (2.5) 
where Lo = D. This is the form of the interior flat metric used by Papapetrou et al 
(1978). 

3. Infinite cylindrical shell 

We apply Israel's (1966) method for surface layers to the interior metric (2.5) and 
the three exterior metrics of the previous section and thus construct, in its most general 
form, the gravitational field of an infinite cylindrical shell. By a straightforward 
argument involving the interior and exterior Killing vectors on the shell one may show 
that the coordinates ( t ,  r, z,  4) can be taken to be the same inside and outside the 
shell, without loss of generality. 

3.1. Case ( i )  

Let the history, X, of the shell be given by r = a .  The metric on X induced by its 
embedding in the interior space-time is 

ds! =-LO' d t 2 + L o a 2 d 4 2 + L o d z 2  (3.1) 

and that due to its embedding in the exterior space-time is 

where po = /wla. The condition 
2 2 ds- = ds+ (3.3) 

yields three independent equations for the six unknowns Lo,  CY, c, D, G and w. These 
are 

(3.4) 

(3.5) 

= - C Y ~ ( C Y  +2G)/2aLo.  (3.6) 

Lo = Dph(C2-l) 

PA-' = CY,(@ - 2G)/2aLo 
and 

In general, if x i  ( i  =0,  1, 2, 3) are the exterior coordinates and x i  =x l ( [ " )  
(F = 0, 2, 3) is the equation of the shell regarded as embedded in the exterior 
space-time, then the second fundamental form of Z due to this embedding is 

(3.7) 
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where the vertical stroke indicates covariant derivative with respect to the exterior 
metric and n’ is a unit vector normal to Z. In the same way the interior second 
fundamental form is 

where the minus signs refer in an obvious way to the interior space-time. Defining 
Y,u by 

Y , , = K ~ ~ - K Z ~  (3.9) 

the surface energy tensor, S,,, of the shell is given by 

-KS,U = YFY - g,,Y (3.10) 

where g,, is the intrinsic metric on Z, y = yMCL and K = 87r. The calculation of S,, is 
considerably simplified here since we are taking 

(3.11) 0 1 2 3  0 1 2  ( x C , x + , x + , x + ) ~ ( x - , x - , x - , x 1 ) ~ ( ( t ,  r , z ,  4) 

and hence the intrinsic coordinates on Z are 

(eo, r 2 ,  t3) = (t, z,d).  (3.12) 

After some manipulation using (3.4), (3.5) and (3.6) we find that the non-zero 
components of the surface energy tensor are 

and 

4K a 

(3.13) 

(3.14) 

(3.15) 

Adapting Whittaker’s (1935) theorem to the case of a surface layer (see McCrea 
1976) we define the total mass M of the shell to be 

M = (-soo + SZ2 + S 3 3 ) p  dz dd.  I, (3.16) 

Clearly the mass will be infinite, but we can calculate the mass per unit length of z ,  
M I ,  to be 

(3.17) MI = dM/dz = f(1 + 2Gc/a) .  

This agrees with the results of Papapetrou et a1 (1978). 

3.2. Case ( i i )  

In this case we take (2.5) as the interior and (2.3) as the exterior metric. Condition 
(3.3) yields the following three independent equations for the six unknowns LO, a, 
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c, D, G and w :  

sin PO = al/2awLo 

COS BO = a1 G j a a o L o  

(3.18) 

(3.19) 

and 

D = p i k ( l + c 2 )  (3.20) 

Continuing as in case (i) we can calculate the surface energy tensor S,, and find 
where PO = Jwla and Po = c log po.  

the only non-zero components to be 

and 

(3.21) 

(3.22) 

(3.23) 

where again K = 87r. The mass per unit length of z, as defined in (3.16) and (3.17), 
for this case is 

MI = a(l+ 2Gc/a) .  (3.24) 

3.3. Case (iii) 
Matching the interior metric (2.5) to the exterior metric (2.4), as in the previous cases, 
yields three independent equations for the five unknowns Lo, 6, D, G and w. These 
are 

Lo = Dpg1/2 (3.25) 

2 G l o g p o = l  (3.26) 
and 

G = abLo (3.27) 

where po = lola. Using these, the non-zero components of the surface energy tensor 
S,, can be shown to be 

aLAl2 
s 3 3  = - ( 1  +4G). 4K 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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4. Properties of the surface energy tensor 

Following Hawking and Ellis (1973) and considering the non-zero components of the 
surface energy tensor, S+), with respect to the orthonormal base 

we find that the restrictions imposed on by the energy conditions are 

Applying these to the surface energy tensors in each of the three cases one obtains 
the following results. 
Case (i) 

C 2 S 1  (4.3) 

1+4Gc/cu + c 2 a 0 .  (4.4) 

1 + 4 G c / ~  - c (4.5) 

1 + 4 G a 0 .  (4.6) 

and 

Case (ii) 

a 0. 

Case (iii) 

Clearly these restrictions ensure that the mass per unit coordinate length is positive 
for each of the three cases, as given by (3.17), (3.24) and (3.31). 

The proper surface density ,U and the principal stresses in the z and 4 directions, 
written uz and U+ respectively, can now be obtained from the eigenvalues of the 
surface energy tensor. It is convenient to use the orthonormal components S(ev) 
defined above. Since S(2e)  = 0, uz = 0 in all three cases and the eigenvector equation 
reduces to the simple 2 x 2 tensor equation 

s ( A B ) u B  = h 7 A B u B  (4.7) 
where A, B = 0, 3 and T A B  = diag(-1, 1). Solving (4.7) yields two eigenvectors, one 
time-like and one space-like with the corresponding eigenvalues A(o) and respec- 
tively. The proper surface density ,U = -A(o, and the principal stress in the 4 direction 
u4 = It is found that for all three cases 

U+ = p ( q  - 2 J ~ M I  - 4) (4.9) 

where p = 1/4Ka~;/' and (4.10) 
q = l - c 2  l a c 2 > 0  for case (i) (4.11) 

C 2 > 0  for case (ii) (4.12) 

q = l  for case (iii). (4.13) 

2 q = l + c  

MI is given by (3.17), (3.24) and (3.31) for cases (i), (ii) and (iii) respectively. 
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A simple calculation in each of the three cases shows that the limitations on the 
constants contained in the previous section ensure that ~1 is real and positive and that 
U+ is real in each case, so the densities and stresses are physically reasonable. 

5. General discussion 

In cases (i) and (ii) matching the interior and exterior metrics for a given radius yields 
three equations for six unknowns, so we require three further conditions to determine 
the metric completely. This is reasonable since the physical quantities such as mass 
and stress will affect the metric. If we fix the mass per unit length M1, the density p 
and the stress U+ we can determine all the constants and so both interior and exterior 
metrics are known. 

In case (iii) however we have only five unknowns and so for a given radius, if two 
of the physical quantities are fixed we can evaluate all the constants and hence the 
metric. 

A further interesting point is that given u d / p ,  the value of the mass per unit length 
MI determines whether the exterior metric is case (i), (ii) or (iii). We can show this 
by writing M I  in terms of U+ using (4.9) which results in the equation 

where z = u d / p ,  and 0 s q < 1 in case (i), 4 > 1 in case (ii) and 4 = 1 in case (iii). Since, 
by (4.9), z s 4 in all three cases, we obtain the following general classification. 

For z S O  
In case (i) $2’ S Mi< &(2’ - 22 5 )  

in case (ii) >&(z2-22 4- 5 )  

in case (iii) M1= &’- 22 + 5 ) .  

For O < z < l  

In case (i) k2 A ( Z ’ - 2 2  + 5 )  

in case (ii) Mi> $(Z’- 22 4- 5 )  

in case (iii) MI = &(2’- 22 + 5 ) .  

For z = 1 

Case (i) is not possible since z d 4 < 1, 

in case (ii) M1 >Q 
M -1 in case (iii) 1 - 8 .  

For z > 1 

Only case (ii) can occur and M1 > $z.  

( 5 . 2 )  

(5.3) 

(5.4) 

( 5 . 5 )  

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

We can see that provided z is fixed, then the value of M I  determines whether the 
exterior metric is case (i), (ii) or (iii). In the limit of case (iii) where G and b go to 
zero while keeping G / b  constant, z = -1 and M1 = a. 
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For the purpose of comparison, consider a cylindrical shell composed of dust, as 
discussed by Papapetrou et a1 (1978). The stress U+ will, by definition of a dust, be 
zero (this is equivalent to the condition in the above paper that TOOT33 = T03’) and 
the inequalities (5.2), (5.3), (5.4) reduce to 

OSM& for case (i) 

Mi>& for case (ii) 

and 

for case (iii). M - A  
1 - 3 2  

The extension of the solution to three exterior metrics completes the picture and 
allows a full range of values for the mass per anit length Ml, rather than the restricted 
range of case (i) as studied by Papapetrou et a1 (1978). 

We note finally that if ua = (U’, 0, 0, u 3 )  are the orthonormal tetrad components 
of the time-like eigenvector (i.e. the four-velocity) then 

(5.11) 

so that ( U ’ / U ~ ) ~ +  1 as q + 8M1. From (4.8) and (4.9) it follows that in all three cases 
the four-velocity becomes null as a+ + k.  

( U  3/ U O)’ = (4M1 - c q ) /  (4M1 + G) 
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